Package 'biplotEZ'

July 8, 2024
Title EZ-to-Use Biplots
Version 2.0
Description Provides users with an EZ-to-use platform for representing data with biplots. Currently principal component analysis (PCA) and canonical variate analysis (CVA) biplots are included. This is accompanied by various formatting options for the samples and axes. Alpha-bags and concentration ellipses are included for visual enhancements and interpretation. For an extensive discussion on the topic, see Gower, J.C., Lubbe, S. and le Roux, N.J. (2011, ISBN: 978-0-470-01255-0) Understanding Biplots. Wiley: Chichester.

License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.3.2
VignetteBuilder knitr
Config/testthat/edition 3
Suggests caret, cluster, geometry, ggplot2, ggrepel, grid, knitr, MASS, rgl, rmarkdown, testthat ($>=3.0 .0$)

Imports graphics, grDevices, plotrix, splines, stats, withr
NeedsCompilation yes
Author Sugnet Lubbe [aut, cre, cph] (https://orcid.org/0000-0003-2762-9944), Niël le Roux [aut] (https://orcid.org/0000-0002-1791-746X), Johané Nienkemper-Swanepoel [aut] (https://orcid.org/0000-0001-6086-8272), Raeesa Ganey [aut] (https://orcid.org/0009-0008-6973-0999), Ruan Buys [aut] (https://orcid.org/0000-0001-8527-8631), Zoë-Mae Adams [aut] (https://orcid.org/0000-0003-3730-4887), Peter Manefeldt [aut] (https://orcid.org/0000-0002-8604-843X)

Maintainer Sugnet Lubbe muvisu@sun.ac.za
Repository CRAN
Date/Publication 2024-07-08 10:00:02 UTC

Contents

alpha.bags 3
AoD 4
AoD.biplot 5
axes 6
biplot 8
biplotEZ 11
CA 12
CA.biplot 13
CATPCA 14
classification 15
classification.biplot 16
classify 17
CVA 18
CVA.biplot 20
CVAlowdim 21
density1D 22
density2D 23
ellipses 24
extended.matching.coefficient 25
fit.measures 26
interpolate 27
legend.type 28
means 29
newaxes 30
newsamples 31
PCA 33
PCA.biplot 34
PCO 35
PCO.biplot 36
plot.biplot 38
plot3D 39
prediction 39
print.biplot 40
print.CA 41
reflect 41
regress 42
regress.biplot 43
rotate 44
samples 44
sqrtManhattan 46
summary.biplot 47
translate_axes 48
Index 49

Description

This function produces α-bags, which is a useful graphical summary of the scatter plot. The alphabag refers to a contour which contains $\alpha \%$ of the observations.

Usage

alpha.bags(bp, alpha = 0.95, which = NULL, col = ez.col[which], lty = 1, lwd $=1$, max $=2500$, trace $=$ TRUE, opacity $=0.25$, outlying=FALSE)

Arguments

bp an object of class biplot.
alpha numeric vector between 0 and 1 to determine coverage of the bag (α), with default 0.95.
which numeric vector indicating the selection of groups or classes to be fitted with α-bags.
col vector of colours for the α-bags. Multiple α bags for one group will be displayed in the same colour.
lty \quad vector of line types for the α-bags. The same line type will be used per value of α.
lwd vector of line widths for the α-bags. The same line width will be used per value of α.
$\max \quad$ maximum number of samples to include in α-bag calculations, with default 2500. If more samples are in the group, a random sample of size max is taken for the computations.
trace logical, indicating progress of computation.
opacity level of opacity, with default 0.5.
outlying logical indicating whether only outlying points should be plotted. Note the which argument may be overwritten when TRUE

Value

A list with the following components is available:
alpha.bags list of coordinates for the α-bags for each group.
col vector of colours for the α-bags.
lty \quad vector of line types for the α-bags.
lwd vector of line widths for the α-bags.

References

Gower, J., Gardner-Lubbe, S. \& Le Roux, N. (2011, ISBN: 978-0-470-01255-0) Understanding Biplots. Chichester, England: John Wiley \& Sons Ltd.

Examples

biplot (iris[,1:4]) |> PCA(group.aes=iris[,5]) |> alpha.bags(alpha=0.95) |> plot()
biplot (iris[,1:4],group.aes=iris[,5]) |> PCA() |> alpha.bags(alpha=0.95) |> plot()
AoD Use the Analysis of Distance (AoD) method to construct the biplot

Description

This function appends the biplot object with elements resulting from using the AoD method.

Usage

AoD(bp, classes=bp\$classes, Dmat=NULL, dist.func=NULL, dim.biplot $=c(2,1,3)$, e.vects $=1: n c o l(b p \$ X)$, weighted = c("unweighted","weighted"), show.class.means = TRUE, axes = c("regression","splines"), ...)

Arguments

bp an object of class biplot obtained from preceding function biplot().
classes a vector of the same length as the number of rows in the data matrix with the class indicator for the samples.
Dmat the matrix of Euclidean embeddable distances between samples.
dist.func a character string indicating which distance function is used to compute the Euclidean embeddable distances between samples. One of NULL (default) which computes the Euclidean distance or other functions that can be used for the dist() function.
dim.biplot the dimension of the biplot. Only values 1, 2 and 3 are accepted, with default 2 .
e.vects the vector indicating which eigenvectors (canonical variates) should be plotted in the biplot, with default 1:dim. biplot.
weighted a character string indicating the weighting of the classes. One of "unweighted" for each class to receive equal weighting or "weighted" for each class to receive their class sizes as weights.
show.class.means
a logical value indicating whether to plot the class means on the biplot.
axes a character string indicating the type of biplot axes to be used in the biplot. One of "regression" or "splines".
... more arguments to dist.func.

Value

Object of class biplot

Examples

```
biplot(iris[,1:4]) |> AoD(classes=iris[,5])
# create a CVA biplot
biplot(iris[,1:4]) |> AoD(classes=iris[,5]) |> plot()
```

AoD.biplot

Description

This function is used to construct the AoD biplot

```
Usage
    ## S3 method for class 'biplot'
    AoD(
        bp,
        classes = bp$classes,
        Dmat = NULL,
        dist.func = NULL,
        dim.biplot = c(2, 1, 3),
        e.vects = 1:ncol(bp$X),
        weighted = c("unweighted", "weighted"),
        show.class.means = TRUE,
        axes = c("regression", "splines"),
    )
```


Arguments

bp	an object of class biplot obtained from preceding function biplot().
classes	a vector of the same length as the number of rows in the data matrix with the class indicator for the samples.
the matrix of Euclidean embeddable distances between samples.	
dist.func	a character string indicating which distance function is used to compute the Eu- clidean embeddable distances between samples. One of NULL (default) which computes the Euclidean distance or other functions that can be used for the dist() function.
dim.biplot	the dimension of the biplot. Only values 1, 2 and 3 are accepted, with default 2.
e.vects	the vector indicating which eigenvectors (canonical variates) should be plotted in the biplot, with default 1:dim.biplot.

```
weighted a character string indicating the weighting of the classes. One of "unweighted"
        for each class to receive equal weighting or "weighted" for each class to receive
        their class sizes as weights.
show.class.means
    a logical value indicating whether to plot the class means on the biplot.
axes a character string indicating the type of biplot axes to be used in the biplot. One
    of "regression" or "splines".
... more arguments to dist.func.
```


Value

an object of class biplot.

Examples

```
biplot(iris) |> AoD(classes = iris[,5]) |> plot()
```

```
axes Aesthetics for biplot axes
```


Description

This function allows formatting changes to axes.

Usage

axes(bp, X.names=colnames(bp\$X), which = 1:bp\$p, col = grey(0.7), lwd = 1, lty = 1, label.dir = "Orthog", label.col = col, label.cex = 0.75, label.line = 0.1, label. offset=rep $(0,4)$, ticks $=5$, tick.col $=$ col, tick.size $=1$, tick.label $=$ TRUE, tick.label.side = "below", tick.label.col = tick.col, tick.label.cex = 0.6, predict.col = col, predict.lwd = lwd, predict.lty = lty, ax.names = X.names, orthogx $=0$, orthogy $=0$, vectors $=$ FALSE, unit.circle=FALSE)

Arguments

bp
X.names
which integer-valued vector specifying which biplot axes are shown in a biplot. By default all p biplot axes are shown.
col vector of size p specifying colours of labels of biplot axes. The default is grey (0.7).
lwd axis line width, with default 1.
lty axis line type, with default 1.
an object of class biplot.

label.dir	One of "Orthog" (default), "Hor" or "Paral" specifying titles of axes to appear orthogonal to the side of the figure; always horizontally or always parallel to the side of the figure.
label.col	axis label colour, with default, col.
label.cex	axis label expansion, with default 0.75.
label.line	axis label written on which margin line, with default 0.1.
label.offset	A four-component numeric vector controlling the distance a biplot axis title is printed from the side of the figure. Sides are numbered 1 to 4 according to R conventions clockwise starting from the bottom horizontal side. Default is rep $(0,4)$
ticks	integer-valued vector of size equal to the number of biplot axes to control the number of tickmarks on each individual biplot axis. Default is 5 for each axis.
tick.col	tick mark colour, with default
tick.size	positive integer-valued vector with specifying tick mark sizes, with default 1.
tick.label	logical, whether axes should be labelled or not, with default TRUE.
tick.label.side	
	character vector specifying position of the tick label "below" or "above" the axis.
tick.label.col	tick mark label colour, with default tick.col.
tick.label.cex	tick mark label expansion, with default 0.6.
predict.col	predicted samples colour, with default col.
predict.lwd	predicted samples line width, with default lwd.
predict.lty	predicted samples line type, with default lty.
ax.names	vector of size p containing user defined names for the variables.
orthogx	numeric vector of size p specifying the x-coordinate of the parallel transformation of each axis. Defaults to zero for each axis. Only used when the dimension of the biplot is two.
orthogy	numeric vector of size p specifying the y-coordinate of the parallel transformation of each axis. Defaults to zero for each axis. Only used when the dimension of the biplot is two.
vectors	logical, whether calibrated axes should be displayed on the biplot
unit.circle	logical, whether a unit circle should be displayed on the biplot

Value

A list with the following components is available:

which	vector of the columns displayed as axes.
col	vector of axis colours.
lwd	vector of axis line widths.
lty	vector of axis line types.
label.dir	direction of the axis labels.
label.col	vector of axis label colours.

```
label.cex vector of axis labels expansions.
label.line vector of axis label margin lines from axes.
ticks vector representing the number of tick marks per axis.
tick.col vector of tick mark colours.
tick.size vector of tick mark sizes.
tick.label vector of logical values indicating whether axes are labelled.
tick.label.side
    vector specifying position of the tick label "below" or "above" the axis.
tick.label.col vector of tick mark label colours.
tick.label.cex vector of tick mark label expansions.
predict.col vector of colours for the predicted samples.
predict.lty vector of line types for the predicted samples.
predict.lwd vector of line widths for the predicted samples.
names vector of variable names defined by the user.
orthogx vector of the horisontal translations for each axis.
orthogy vector of the vertical translations for each axis.
calibrated.axis
    whether to plot calibrated axis
```


Examples

```
biplot(iris[,1:4]) |> PCA() |> axes(col="purple") |> plot()
biplot(iris[,1:4]) |> PCA() |> samples(col="purple",pch=15) |> axes() |> plot()
```

biplot
First step to create a new biplot with biplotEZ

Description

This function produces a list of elements to be used when producing a biplot, which provides a useful data analysis tool and allows the visual appraisal of the structure of large data matrices. Biplots are the multivariate analogue of scatter plots. They approximate the multivariate distribution of a sample in a few dimensions and they superimpose on this display representations of the variables on which the samples are measured.

Usage

biplot(data, classes = NULL, group.aes = NULL, center = TRUE, scaled = FALSE, Title = NULL)

Arguments

data a data frame or numeric matrix containing all variables the user wants to analyse.
classes a vector identifying class membership.
group.aes a vector identifying groups for aesthetic formatting.
center a logical value indicating whether data should be column centered, with default TRUE.
scaled a logical value indicating whether data should be standardised to unit column variances, with default FALSE.

Title the title of the biplot to be rendered, enter text in " ".

Details

This function is the entry-level function in biplotEZ to construct a biplot display. It initialises an object of class biplot which can then be piped to various other functions to build up the biplot display.

Value

A list with the following components is available:

X	the matrix of the centered and scaled numeric variables.
Xcat	the data frame of the categorical variables.
raw.X	the original data.
classes	the vector of category levels for the class variable. This is to be used for colour, pch and cex specifications.
na.action	the vector of observations that have been removed.
center	a logical value indicating whether \mathbf{X} is centered.
scaled	a logical value indicating whether \mathbf{X} is scaled.
means	the vector of means for each numeric variable.
sd	the vector of standard deviations for each numeric variable.
n	the number of observations.
p	the number of variables.
group.aes	the vector of category levels for the grouping variable. This is to be used for colour, pch and cex specifications.
g. names	the descriptive names to be used for group labels.
g	the number of groups.
Title	the title of the biplot rendered

biplot

Useful links

The biplot display can be built up in four broad steps depending on the needs for the display. Firstly, choose an appropriate method to construct the display; Secondly, change the aesthetics of the display; Thirdly, append the display with supplementary features such as axes, samples and means; Finally, superimpose shapes, characters or elements onto the display.

1. Different types of biplots:

- PCA(): Principal Component Analysis biplot of various dimensions
- CVA(): Canonical Variate Analysis biplot
- PCO(): Principal Coordinate Analysis biplot
- CA(): Correspondence Analysis biplot
- regress(): Regression biplot method

2. Customise the biplot display with aesthetic functions:

- samples(): Change the formatting of sample points on the biplot display
- axes(): Change the formatting of the biplot axes

3. Supplement the existing biplot with additional axes, samples and group means:

- newsamples(): Add and change formatting of additional samples
- newaxes(): Add and change formatting of additional axes
- means(): Insert class means to the display, and format appropriately

4. Append the biplot display:

- alpha.bags(): Add α-bags
- ellipses(): Add ellipses
- density2D(): Add 2D density regions

Other useful links:

- plot()
- fit.measures()
- legend.type()
- interpolate()
- prediction()
- classify()
- reflect()
- rotate()

References

Gabriel, K.R. (1971) The biplot graphic display of matrices with application to principal component analysis. Biometrika. 58(3):453-467. Gower, J., Gardner-Lubbe, S. \& Le Roux, N. (2011, ISBN: 978-0-470-01255-0) Understanding Biplots. Chichester, England: John Wiley \& Sons Ltd. Gower, J.C. \& Hand, D.J.(1996, ISBN: 0-412-71630-5) Biplots. London: Chapman \& Hall.

Examples

```
biplot(data = iris)
# create a PCA biplot
biplot(data = iris) |> PCA() |> plot()
```

biplotEZ biplotEZ: EZ-to-Use Biplots

Description

Details

The goal of biplotEZ is to provide users an EZ-to-use platform for visually representing their data with biplots. Currently, this package includes principal component analysis (PCA) and canonical variate analysis (CVA) biplots. This is accompanied by various formatting options for the samples and axes. Alpha-bags and concentration ellipses are included for visual enhancements and interpretation.

Details

Package:	biplotEZ
Type:	Package
Version:	2.0
Date:	$05-04-2024$
License:	MIT
LazyLoad:	TRUE

Author(s)

- Sugnet Lubbe (Maintainer, muvisu@sun.ac.za)
- Niël le Roux
- Johané Nienkemper-Swanepoel
- Raeesa Ganey
- Ruan Buys
- Zoë-Mae Adams
- Peter Manefeldt

Core Functions

- biplot
- PCA
- CVA
- CA

Code Availability

The newest version of the package can be obtained on GitHub: https://github.com/MuViSU/ biplotEZ

CA Correspondence Analysis (CA) method

Description

This function produces a list of elements to be used for CA biplot construction by approximation of the Pearson residuals.

Usage

$C A(b p$, dim.biplot $=c(2,1,3)$, e.vects $=1: n c o l(b p \$ X)$, variant $=$ "Princ", lambda.scal = FALSE)

Arguments

bp object of class biplot obtained from preceding function biplot (center = FALSE). In order to maintain the frequency table, the input should not be centered or scaled. For CA, bp should be a contingency table.
dim.biplot dimension of the biplot. Only values 1, 2 and 3 are accepted, with default 2 .
e.vects which eigenvectors (canonical variates) to extract, with default 1:dim.biplot.
variant which correspondence analysis variant, with default "Princ", presents a biplot with rows in principal coordinates and columns in standard coordinates. variant = "Stand", presents a biplot with rows in standard coordinates and columns in principal coordinates. variant = "symmetric", presents a symmetric biplot with row and column standard coordinates scaled equally by the singular values.
lambda.scal logical value to request lambda-scaling, default is FALSE.

Value

A list with the following components is available:
Z Combined data frame of the row and column coordinates.
$r \quad$ Numer of levels in the row factor.
c Numer of levels in the column factor.

rowcoor	Row coordinates based on the selected variant.
colcoor	Column coordinates based on the selected variant.
P	Correspondence Matrix
Smat	Standardised Pearson residuals.
SVD	Singular value decomposition solution: d, u, v.
qual	Quality of the approximation.
lambda.val	The computed lambda value if lambda-scaling is requested.

Examples

```
# Creating a CA biplot with rows in principal coordinates:
biplot(HairEyeColor[,,2], center = FALSE) |> CA() |> plot()
# Creating a CA biplot with rows in standard coordinates:
biplot(HairEyeColor[,,2], center = FALSE) |> CA(variant = "Stand") |>
samples(col=c("magenta","purple"), pch=c(15,17), label.col="black") |> plot()
# Creating a CA biplot with rows and columns scaled equally:
biplot(HairEyeColor[,,2], center = FALSE) |> CA(variant = "Symmetric") |>
samples(col=c("magenta","purple"), pch=c(15,17), label.col="black") |> plot()
```


Description

Performs calculations for a CA biplot.

Usage

```
## S3 method for class 'biplot'
CA(
    bp,
    dim.biplot = c(2, 1, 3),
    e.vects = 1:ncol(bp$X),
    variant = "Princ",
    lambda.scal = FALSE
)
```


Arguments

bp object of class biplot obtained from preceding function biplot (center $=$ FALSE). In order to maintain the frequency table, the input should not be centered or scaled. For CA, bp should be a contingency table.
dim.biplot dimension of the biplot. Only values 1, 2 and 3 are accepted, with default 2 .
e.vects which eigenvectors (canonical variates) to extract, with default 1 : dim.biplot.
variant which correspondence analysis variant, with default "Princ", presents a biplot with rows in principal coordinates and columns in standard coordinates. variant = "Stand", presents a biplot with rows in standard coordinates and columns in principal coordinates. variant = "symmetric", presents a symmetric biplot with row and column standard coordinates scaled equally by the singular values.
lambda.scal logical value to request lambda-scaling, default is FALSE.

Value

an object of class CA, inherits from class biplot.

Examples

biplot(HairEyeColor[,,2], center = FALSE) |> CA() |> plot()

Description

Categorical Principal Component Analysis

Usage

CATPCA(bp, dim.biplot $=c(2,1,3)$, e.vects $=1: n c o l(b p \$ X)$, group.aes $=$ NULL, show.class.means $=$ FALSE)

Arguments

bp an object of class biplot obtained from preceding function biplot().
dim.biplot dimension of the biplot. Only values 1, 2 and 3 are accepted, with default 2 .
e.vects which eigenvectors (principal components) to extract, with default 1 : dim. biplot.
group.aes vector of the same length as the number of rows in the data matrix for differentiated aesthetics for samples.
show.class.means
logical, indicating whether group means should be plotted in the biplot.

Value

an object of class biplot

Examples

CATPCA (iris)

```
classification Classification biplot method
```


Description

This function produces a list of elements to be used for constructing a classification biplot.

Usage

classification(bp, Pmat, dim.biplot $=c(2,1,3), ~ e . v e c t s=1: n c o l(b p \$ X)$, group.aes=NULL, axes = "regression", col=ez.col, opacity=0.4, borders = FALSE)

Arguments

bp an object of class biplot obtained from preceding function biplot().
Pmat a matrix containing the posterior probability for the classes
dim.biplot dimension of the biplot. Only values 1, 2 and 3 are accepted, with default 2 .
e.vects which eigenvectors (principal components) to extract, with default 1: dim. biplot.
group.aes vector of the same length as the number of rows in the data matrix for differentiated aesthetics for samples.
axes type of axes, defaults to "regression"
col colour of the classification regions
opacity opacity of classification regions
borders logical, indicating whether borders should be added to classification regions

Value

Object of class biplot with the following elements:

References

Gardner-Lubbe, S., 2016. A triplot for multiclass classification visualisation. Computational Statistics \& Data Analysis, 94, pp.20-32.

Examples

```
biplot(iris[,1:4]) |>
classification(predict(MASS::lda(Species ~ ., data = iris))$posterior)
# create a classification biplot
biplot(iris[,1:4]) |>
classification(predict(MASS::lda(Species ~ ., data = iris))$posterior) |>
plot()
```

```
classification.biplot classification biplot
```


Description

Performs calculations for a classification biplot.

Usage

```
    ## S3 method for class 'biplot'
    classification(
        bp,
        Pmat,
        dim.biplot = c(2, 1, 3),
        e.vects = 1:ncol(bp$X),
        group.aes = NULL,
        axes = "regression",
        col = ez.col,
        opacity = 0.4,
        borders = FALSE
    )
```


Arguments

bp an object of class biplot obtained from preceding function biplot().
Pmat a matrix containing the posterior probability for the classes
dim.biplot dimension of the biplot. Only values 1,2 and 3 are accepted, with default 2 .
e.vects which eigenvectors (principal components) to extract, with default 1 : dim.biplot.
group.aes vector of the same length as the number of rows in the data matrix for differentiated aesthetics for samples.
axes type of axes, defaults to "regression"
col colour of the classification regions
opacity opacity of classification regions
borders logical, indicating whether borders should be added to classification regions

Value

an object of class biplot.

Description

Classify samples into classes

Usage

classify(
bp,
classify.regions = TRUE, col = ez.col, opacity = 0.4, borders = FALSE
)

Arguments

bp an object of class biplot
classify.regions
a logical value indicating whether classifications regions should be shown in the biplot, with default TRUE.
col the colours of the classification regions
opacity the opacity levels of the classification regions
borders the border colours of the classification regions

Value

A list object called classify appended to the object of class biplot with the following elements:
table the confusion matrix resulting from the classification into classes.
rate the classification accuracy rate.
classify.regions
a logical value indicating whether classification regions are shown in the biplot.
aes a list of chosen aesthetics for the colours, opacity levels and border colours of the classification regions.

Examples

```
biplot(iris[,1:4],classes = iris[,5]) |> CVA() |> axes(col="black") |>
    classify(col=c("red","blue","orange"),opacity=0.1) |> plot()
```


Description

This function appends the biplot object with elements resulting from performing CVA.

Usage

CVA(bp, classes=bp\$classes, dim.biplot $=c(2,1,3)$, e.vects $=1: n c o l(b p \$ X)$, weightedCVA = "weighted", show.class.means = TRUE, low.dim = "sample.opt")

Arguments

bp	an
classes	a vector of the same length as the number of rows in the data matrix with the class indicator for the samples.
dim.biplot	the dimension of the biplot. Only values 1, 2 and 3 are accepted, with default 2.
e.vects	the vector indicating which eigenvectors (canonical variates) should be plotted in the biplot, with default 1 :dim. biplot.
weightedCVA	a character string indicating which type of CVA to perform. One of "weighted" (default) for a weighted CVA to be performed (The centring matrix will be a diagonal matrix with the class sizes $(\mathbf{C}=\mathbf{N})$, "unweightedCent" for unweighted CVA to be performed (The centring matrix is the usual centring matrix ($\left.\mathbf{C}=\mathbf{I}_{G}-G^{-1} \mathbf{1}_{G} \mathbf{1}_{G}^{\prime}\right)$) or "unweightedI" for unweighted CVA to be performed while retaining the weighted centroid (The centring matrix is an indicator matrix $\left(\mathbf{C}=\mathbf{I}_{G}\right)$).
show.class.means	
	a logical value indicating whether to plot the class means on the biplot.
low.dim	a character string indicating which method to use to construct additional dimen$\operatorname{sion}(\mathrm{s})$ if the dimension of the canonical space is smaller than dim. biplot. One of "sample.opt" (default) for maximising the sample predictivity of the individual samples in the biplot or "Bhattacharyya.dist" which is based on the decomposition of the Bhattacharyya distance into a component for the sample means and a component for the dissimilarity between the sample covariance matrices.

Value

Object of class CVA with the following elements:

X	the matrix of the centered and scaled numeric variables.
Xcat	the data frame of the categorical variables.
raw.X	the original data.

classes	the vector of category levels for the class variable. This is to be used for colour, pch and cex specifications.
na.action	the vector of observations that have been removed.
center	a logical value indicating whether \mathbf{X} is centered.
scaled	a logical value indicating whether \mathbf{X} is scaled.
means	the vector of means for each numerical variable.
sd	the vector of standard deviations for each numerical variable.
n	the number of observations.
p	the number of variables.
group.aes	the vector of category levels for the grouping variable. This is to be used for colour, pch and cex specifications.
g. names	the descriptive names to be used for group labels.
g	the number of groups.
Title	the title of the biplot rendered.
Lmat	the matrix for transformation to the canonical space.
Linv	the inverse of \mathbf{L}.
eigenvalues	the vector of eigenvalues of the two-sided eigenvalue problem.
Z	the matrix with each row containing the details of the points to be plotted (i.e. coordinates).
ax.one.unit	one unit in the positive direction of each biplot axis.
Gmat	the indicator matrix defining membership of the classes.
Xmeans	the matrix of the class means.
Zmeans	the matrix of the class mean coordinates that are plotted in the biplot.
e.vects	the vector indicating which canonical variates are plotted in the biplot.
Cmat	the centring matrix based on different choices of weighting described in arguments.
Bmat	the between class sums of squares and cross products matrix.
Wmat	the within class sums of squares and cross products matrix.
Mrr	the matrix used for prediction from the canonical space (the inverse of $\mathbf{M}=$ LV).
Mr	the first r dimensions of the solution to be plotted.
Nmat	the matrix with the class sizes on the diagonal.
lambda.mat	the matrix with the eigenvalues of $\mathbf{W}^{-1 / 2} \mathbf{B} \mathbf{W}^{-1 / 2}$ on the diagonal.
class.means	a logical value indicating whether the class means should be plotted in the biplot.
dim.biplot	the dimension of the biplot.
low.dim	the method used to construct additional dimension(s).

Examples

```
biplot(iris[,1:4]) |> CVA(classes=iris[,5])
# create a CVA biplot
biplot(iris[,1:4]) |> CVA(classes=iris[,5]) |> plot()
```


Description

This function performs calculations for the construction of a CVA biplot.

Usage

```
## S3 method for class 'biplot'
CVA(
    bp,
    classes = bp$classes,
    dim.biplot = c(2, 1, 3),
    e.vects = 1:ncol(bp$X),
    weightedCVA = "weighted",
    show.class.means = TRUE,
    low.dim = "sample.opt"
    )
```


Arguments

bp
an object of class biplot obtained from preceding function biplot().
classes a vector of the same length as the number of rows in the data matrix with the class indicator for the samples.
dim.biplot the dimension of the biplot. Only values 1, 2 and 3 are accepted, with default 2.
e.vects the vector indicating which eigenvectors (canonical variates) should be plotted in the biplot, with default 1: dim.biplot.
weightedCVA a character string indicating which type of CVA to perform. One of "weighted" (default) for a weighted CVA to be performed (The centring matrix will be a diagonal matrix with the class sizes $(\mathbf{C}=\mathbf{N})$, "unweightedCent" for unweighted CVA to be performed (The centring matrix is the usual centring matrix $\left(\mathbf{C}=\mathbf{I}_{G}-G^{-1} \mathbf{1}_{G} \mathbf{1}_{G}^{\prime}\right)$) or "unweightedI" for unweighted CVA to be performed while retaining the weighted centroid (The centring matrix is an indicator matrix $\left(\mathbf{C}=\mathbf{I}_{G}\right)$).
show.class.means
a logical value indicating whether to plot the class means on the biplot.
low. dim a character string indicating which method to use to construct additional dimension(s) if the dimension of the canonical space is smaller than dim. biplot. One of "sample.opt" (default) for maximising the sample predictivity of the individual samples in the biplot or "Bhattacharyya.dist" which is based on the decomposition of the Bhattacharyya distance into a component for the sample means and a component for the dissimilarity between the sample covariance matrices.

Value

an object of class CVA, inherits from class biplot.

Examples

biplot(iris[,1:4]) |> CVA(classes=iris[,5])

Description

This function is used to add dimensions to the CVA biplot when the dimension of the canonical space K is smaller than the dimension of the biplot (dim.biplot). This function is already used in the CVA calculations, and will therefore not have to be used in isolation.

Usage

CVAlowdim(bp, G, W, Mmat, low.dim, K, e.vects)

Arguments

bp an object of class biplot.
G the indicator matrix defining membership of the classes.
W the within class sums of squares and cross products matrix.
Mmat the eigenvector matrix from CVA.
low.dim a character string indicating which method to use to construct additional dimension(s) if the dimension of the canonical space is smaller than dim.biplot. One of "sample.opt" (default) for maximising the sample predictivity of the individual samples in the biplot or Bhattacharyya. dist which is based on the decomposition of the Bhattacharyya distance into a component for the sample means and a component for the dissimilarity between the sample covariance matrices.
K the dimension of the canonical space.
e.vects the vector indicating which canonical variates are plotted in the biplot, with default 1:dim.biplot

Value

A list with three components:
Mr the first r dimensions of the solution to be plotted.
Mrr the matrix used for prediction from the canonical space.
Lmat the matrix for transformation to the canonical space.

Description

Creates a kernel density in 1-dimension

Usage

density1D(
bp,
which = NULL,
h = "nrd0",
kernel = "gaussian",
col = ez.col,
lwd = 1.5,
legend.mar $=c(2,5,0,5)$
)

Arguments

bp	object of class biplot
which	which group.
h	bandwidth.
kernel	character string giving the smoothing kernel to be used.
col	colours to be used for each of the density curves.
lwd	linewidth of density curve.
legend.mar	The margin line of the legend.

Value

An object of class biplot.

Examples

```
biplot (iris,classes=iris[,5]) |> CVA(dim=1) |> density1D() |> plot()
```


Description

Create a density in 2-dimensions

Usage

```
density2D(
        bp,
        which = NULL,
        contours = F,
        h = NULL,
        n = 100,
        col = c("green", "yellow", "red"),
        contour.col = "black",
        cuts = 50,
        cex = 0.6,
        tcl = -0.2,
        mgp = c(0, -0.25, 0),
        layout.heights = c(100, 10),
        legend.mar = c(2, 5, 0, 5)
    )
```


Arguments

bp
object of class biplot
which
contours
h
n
col vector of colours to use to form a 'continuous' sequence of colours.
contour.col
cuts number of colours in col.
cex character expansion.
tcl The length of tick marks as a fraction of the height of a line of text.
mgp The margin line.
layout. heights A vector of values for the heights of rows.
legend.mar The margin line of the legend.

Value

An object of class biplot.

Examples

```
biplot(iris[,1:4],group.aes = iris[,5]) |> PCA() |>
    density2D(which=3,col=c("white","purple","cyan","blue")) |> plot()
biplot(iris[,1:4],group.aes = iris[,5]) |> PCA() |>
    density2D(which=3,col=c("white","purple","cyan","blue"),contours = TRUE,
    contour.col = "grey") |> plot()
```

ellipses Concentration ellipses (κ-ellipses)

Description

This function produces κ-ellipses, which is a useful geometrical description of the data points about the sample mean.

Usage

ellipses(bp, df=2, kappa = NULL, which = NULL, alpha = 0.95, col = bp\$sample\$col[which], lty = 1, lwd = 1, opacity $=0.25$, trace $=$ TRUE)

Arguments

bp
an object of class biplot.
df
degrees of freedom, with default 2.
kappa value to construct κ-ellipse (the value of κ).
which the selection of the group for ellipse construction.
alpha size of α-bag, with default 0.95 .
col colour of ellipse. Multiple κ-ellipse for one group will be displayed in the same colour.
lty line type of ellipse. The same line type will be used per value of κ.
lwd line width of ellipse. The same line width will be used per value of κ.
opacity level of opacity, with default 0.25.
trace logical, indicating progress of computation.

Value

A list with the following components is available:
conc.ellipses list of coordinates for the κ-ellipses for each group.
col vector of colours for the κ-ellipses.
lty \quad vector of line types for the κ-ellipses.
lwd \quad vector of line widths for the κ-ellipses.
alpha vector of α values.

References

Gower, J., Gardner-Lubbe, S. \& Le Roux, N. (2011, ISBN: 978-0-470-01255-0) Understanding Biplots. Chichester, England: John Wiley \& Sons Ltd.

Examples

```
biplot (iris[,1:4]) |> PCA(group.aes=iris[,5]) |> ellipses(kappa=2) |> plot()
```

extended.matching.coefficient

Extended matching coefficient

Description

Extended matching coefficient

Usage

extended.matching. coefficient (X)

Arguments

$X \quad$ a data frame containing the categorical variables used for computing the EMC distance

Value

a dist object

Examples

```
mtdf <- as.data.frame(mtcars)
mtdf$cyl <- factor(mtdf$cyl)
mtdf$vs <- factor(mtdf$vs)
mtdf$am <- factor(mtdf$am)
mtdf$gear <- factor(mtdf$gear)
mtdf$carb <- factor(mtdf$carb)
extended.matching.coefficient(mtdf[,8:11])
```

fit.measures Compute measures of fit for the biplot.

Description

This function computes the measures of fit for the biplot. The biplot object is augmented with additional items, which can differ depending on the type of biplot. The measures provide information on the overall quality of fit and the adequacy of representation of variables.

Usage

fit.measures(bp)

Arguments

bp an object of class biplot.

Value

An object of class biplot. The object is augmented with additional items, depending on the type of biplot object.
quality the overall quality of fit.
adequacy the adequacy of representation of variables.
For an object of class PCA:
axis.predictivity
the fit measure of each individual axis.
sample.predictivity
the fit measure for each individual sample.
For an object of class CVA:
axis.predictivity
the fit measure of each individual axis.
class.predictivity
the fit measure for each class mean.

```
within.class.axis.predictivity
```

the fit measure for each axis based on values expressed as deviations from their class means.
within.class.sample.predictivity
the fit measure for each sample expressed as deviation from its class mean.

Examples

```
out <- biplot (iris[,1:4]) |> PCA() |> fit.measures()
summary(out)
```

interpolate Interpolate supplementary points and variables to add to the biplot

Description

This function adds supplementary points and variables to the plot from a new data set.

Usage

interpolate(bp, newdata $=$ NULL, newvariable $=$ NULL)

Arguments

$$
\begin{array}{ll}
\text { bp } & \text { an object of class biplot obtained from preceding function biplot(). } \\
\text { newdata } & \begin{array}{l}
\text { a new data set, similar in structure to the data set supplied to biplot() contain- } \\
\text { ing supplementary data points to be added onto the biplot. }
\end{array} \\
\text { newvariable } & \begin{array}{l}
\text { a new data set, similar in structure to the data set supplied to biplot() contain- } \\
\text { ing supplementary variables to be added onto the biplot. }
\end{array}
\end{array}
$$

Value

The object of class biplot will be appended with the following elements:
Xnew.raw the new data.
Xnew the matrix of the centered and scaled new numeric variables of new data.
Xnew.cat the matrix of the categorical variables of new data.
Znew the matrix of the coordinates of the new data in the biplot.

Examples

biplot(data $=\operatorname{iris}[1: 145],)|>\operatorname{PCA}()|>\operatorname{interpolate(newdata}=\operatorname{iris}[146: 150],) \mid>\operatorname{plot}()$
legend.type
Format the legend for the biplot

Description

This function enables the user to format the legend and make a required selection to display.

Usage

legend.type(bp, samples = FALSE, means = FALSE, bags = FALSE, ellipses=FALSE,regions=FALSE, new=FALSE, ...)

Arguments

bp	
samples	an object of class biplot. a logical value indicating whether a legend should be printed for samples, with default FALSE.
means	a logical value indicating whether a legend should be printed for means, with default FALSE.
bags	a logical value indicating whether a legend should be printed for bags, with default FALSE. a logical value indicating whether a legend should be printed for concentration
ellipses	ellipses, with default FALSE. a logical value indicating whether a legend should be printed for classification regions, with default FALSE.
new	a logical value indicating whether the legend should appear in a new window, with default FALSE.
\ldots	additional arguments to be sent to legend().

Value

A list with the following components is available:

samples	a logical value indicating whether a legend for samples are provided.
means	a logical value indicating whether a legend for class means are provided.
bags	a logical value indicating whether a legend for α-bags are provided. ellipses regions logical value indicating whether a legend for κ-ellipses are provided.
a logical value indicating whether a legend for classification regions are pro- vided.	
new	a logical value indicating whether the legend appears on new plot.

Examples

```
biplot (iris[,1:4], Title="Test biplot") |> PCA(group.aes = iris[,5]) |>
    legend.type(samples=TRUE) |> plot()
```

means
Aesthetics for biplot class / group means

Description

This function allows formatting changes to class means or group means.

Usage

```
means (bp, which = NULL, col = NULL, pch = 15, cex = 1, label = FALSE,
label.col = NULL,label.cex = 0.75, label.side = "bottom", label.offset = 0.5,
opacity = 1, shade.darker = TRUE)
```


Arguments

bp
which
col mean colour, with default to sample colour.
pch mean plotting character, with default o.
cex mean character expansion, with default 1.
label logical, whether means should be labelled or not, with default TRUE.
label.col vector of length g with the colour of the labels, defaulting to the colour of the means.
label.cex label text expansion, with default 0.75.
label.side side of the plotting character where label appears, with default bottom. Note that unlike the argument pos in text(), options are "bottom", "left", "top", "right" and not $1,2,3,4$.
label. offset offset of the label from the mean point. See ?text for a detailed explanation of the argument offset.
opacity transparency of means.
shade.darker automatically makes the colour of the means a darker shade than the default (or specified) colour

Details

The number of classes or groups (defined by group.aes) is indicated as g. If an argument is not of length g , recycling is used.

Value

A list with the following components is available:
which which means to display.
col colour of the means.

pch	plotting character of the means.
cex	expansion of the plotting character of the means.
label	logical, whether means should be labelled.
label.col	colour of the label.
label.cex	expansion of the label.
label.side	side at which to plot the label of means.
label.offset	offset of the label from the mean point.
opacity	transparency of means

Examples

biplot(iris[,1:4]) |> PCA() |>
means(col = "purple", pch = 15, cex = 2) |> plot()

newaxes Aesthetics for supplementary (new) biplot axes

Description

Aesthetics for supplementary (new) biplot axes

Usage

newaxes(bp, X.new.names=bp\$var.names, which = 1:bp\$num.vars, col = "orange", lwd = 1, lty = 1, label.dir = "Orthog", label.col = col, label.cex = 0.75, label.line = 0.1, ticks = 5, tick.col = col, tick.size = 1, tick.label = TRUE, tick.label.col = tick.col, tick.label.cex = 0.6, tick.label.side = "below", predict.col = col, predict. lwd = lwd, predict.lty $=1$ ty, ax.names $=$ X.new.names, orthogx $=0$, orthogy $=0$)

Arguments

bp object of class biplot
X.new.names
refers to the new column names of bp to specify which axes to label.
which vector of new columns to be displayed in the biplot.
col vector of size p specifying colours of labels of biplot axes. The default is grey (0.7).
lwd axis line width, with default 1.
lty
axis line type, with default 1.
label.dir One of "Orthog" (default), "Hor" or "Paral" specifying titles of axes to appear orthogonal to the side of the figure; always horizontally or always parallel to the side of the figure.
label.col axis label colour, with default, col.
label.cex axis label expansion, with default 0.75.

Value

an object of class biplot

Examples

```
biplot(data = iris[,1:2]) |> PCA() |> interpolate(newvariable = iris[3:4]) |>
    newaxes(col="gold") |> plot()
```

```
newsamples Aesthetics for supplementary (new) biplot samples
```


Description

This function allows formatting changes to new samples.

Usage

newsamples (bp, col = "darkorange1", pch = 1, cex = 1, label = FALSE, label.name = NULL, label.col = NULL,label.cex = 0.75, label.side = "bottom", label.offset $=0.5$, connected $=$ FALSE, connect.col = "black", connect.lty=1, connect. $1 \mathrm{wd}=1$)

Arguments

bp	an object of class biplot.
col	new sample colour, with default darkorange 1.
pch	new sample plotting character, with default o.
cex	new sample character expansion, with default 1.
label	logical, whether samples should be labelled or not, with default FALSE.
label.name	names for the new samples
label.col	vector of length number of new samples with the colour of the labels, defaulting to the colour of the sample points.
label.cex	label text expansion, with default 0.75.
label.side	side of the plotting character where label appears, with default bottom. Note that unlike the argument pos in text(), options are "bottom", "left", "top", "right" and not $1,2,3,4$.
label.offset	offset of the label from the data point. See ?text for a detailed explanation of the argument offset.
connected	logical, whether samples are connected in order of rows of data matrix, with default FALSE.
connect.col	colour of the connecting line, with default black.
connect.lty	line type of the connecting line, with default 1.
connect.lwd	line width of the connecting line, with default 1.

Value

A list with the following components is available:

col	colour of the samples.
pch	plotting character of the samples.
cex	expansion of the plotting character of the samples.
label	TRUE or FALSE, whether samples should be labelled.
label.col	colour of the label.
label.cex	expansion of the label.
label.side	side at which to plot the label of samples.
label.offset	offset of the label from the data point.
connected	TRUE or FALSE, whether samples should be connected in row order of X.
connect.col	colour of the connecting line.
connect.lty	line type of the connecting line.
connect.lwd	line width of the connecting line.

Examples

```
biplot(data = iris[1:145,]) |> PCA() |> samples(col = "grey") |>
interpolate(newdata = iris[146:150,]) |> newsamples(col = rainbow(6), pch=15) |> plot()
```

PCA
Perform Principal Components Analysis (PCA)

Description

This function appends the biplot object with elements resulting from performing PCA.

Usage

PCA(bp, dim.biplot $=c(2,1,3)$, e.vects $=1: n c o l(b p \$ X)$,
group.aes = NULL, show.class.means = FALSE, correlation.biplot = FALSE)

Arguments

bp an object of class biplot obtained from preceding function biplot().
dim.biplot the dimension of the biplot. Only values 1, 2 and 3 are accepted, with default 2 .
e.vects the vector indicating which eigenvectors (principal components) should be plotted in the biplot, with default 1 : dim.biplot.
group.aes a vector of the same length as the number of rows in the data matrix for differentiated aesthetics for samples.
show.class.means
a logical value indicating whether group means should be plotted in the biplot.
correlation.biplot
a logical value. If FALSE, the distances between sample points are optimally approximated in the biplot. If TRUE, the correlations between variables are optimally approximated by the cosine of the angles between axes. Default is FALSE.

Value

An object of class PCA with the following elements:
$X \quad$ the matrix of the centered and scaled numeric variables.
Xcat the data frame of the categorical variables.
raw.X the original data.
classes the vector of category levels for the class variable. This is to be used for colour, pch and cex specifications.
na.action the vector of observations that have been removed.
center a logical value indicating whether \mathbf{X} is centered.
scaled a logical value indicating whether \mathbf{X} is scaled.
means the vector of means for each numerical variable.
sd the vector of standard deviations for each numerical variable.
$\mathrm{n} \quad$ the number of observations.
p the number of variables.
group.aes the vector of category levels for the grouping variable. This is to be used for colour, pch and cex specification.
g.names the descriptive names to be used for group labels.
g
Title the title of the biplot rendered.
Z the matrix with each row containing the details of the points that are plotted (i.e. coordinates).
Lmat the matrix for transformation to the principal components.
Linv the inverse of \mathbf{L}.
eigenvalues the vector of eigenvalues of the covariance matrix of \mathbf{X}.
ax.one.unit one unit in the positive direction of each biplot axis.
e.vects the vector indicating which principal components are plotted in the biplot.

Vr the 1:dim.biplot columns of V.
dim.biplot the dimension of the biplot.
V.mat the matrix containing the right singular vectors of \mathbf{X}.

Sigma.mat
U.mat
class.means a logical value indicating whether group means are plotted in the biplot.
Zmeans the matrix of class mean coordinates that are plotted in the biplot.

References

Gabriel, K.R. (1971) The biplot graphic display of matrices with application to principal component analysis. Biometrika. 58(3):453-467.

Examples

```
biplot(iris[,1:4]) |> PCA()
# create a PCA biplot
biplot(data = iris) |> PCA() |> plot()
```


Description

This function performs calculations for the construction of a PCA biplot.

Usage

```
## S3 method for class 'biplot'
PCA(
    bp,
    dim.biplot = c(2, 1, 3),
    e.vects = 1:ncol(bp$X),
    group.aes = NULL,
    show.class.means = FALSE,
    correlation.biplot = FALSE
)
```


Arguments

bp an object of class biplot obtained from preceding function biplot().
dim.biplot the dimension of the biplot. Only values 1,2 and 3 are accepted, with default 2 .
e.vects the vector indicating which eigenvectors (principal components) should be plotted in the biplot, with default 1 :dim.biplot.
group.aes a vector of the same length as the number of rows in the data matrix for differentiated aesthetics for samples.
show.class.means a logical value indicating whether group means should be plotted in the biplot.
correlation.biplot
a logical value. If FALSE, the distances between sample points are optimally approximated in the biplot. If TRUE, the correlations between variables are optimally approximated by the cosine of the angles between axes. Default is FALSE.

Value

an object of class PCA, inherits from class biplot.

Examples

biplot(iris[,1:4]) |> PCA()
\# create a PCA biplot
biplot(data $=$ iris) $|>\operatorname{PCA}()|>\operatorname{plot}()$

Description

Principal Coordinate Analysis (PCO) biplot method

Usage

PCO(bp, Dmat=NULL, dist.func=NULL, dist.func.cat=NULL, dim.biplot $=c(2,1,3)$, e.vects $=$ NULL, group.aes=NULL, show.class.means = FALSE, axes = c("regression","splines"), ...)

Arguments

bp an object of class biplot obtained from preceding function biplot().
Dmat nxn matrix of Euclidean embeddable distances between samples
dist.func function to compute Euclidean embeddable distances between samples. The default NULL computes Euclidean distance.
dist.func.cat function to compute Euclidean embeddable distance between categorical variables for the samples. The default NULL computes the extended matching coefficient.
dim.biplot dimension of the biplot. Only values 1,2 and 3 are accepted, with default 2 .
e.vects e.vects which eigenvectors (canonical variates) to extract, with default 1: dim.biplot.
group.aes vector of the same length as the number of rows in the data matrix for differentiated aesthetics for samples.
show.class.means logical, indicating whether to plot the class means on the biplot.
axes type of biplot axes, currently only regression axes are implemented
... more arguments to dist.func

Value

Object of class biplot

Examples

```
    biplot(iris[,1:4]) |> PCO(dist.func = sqrtManhattan)
```

 \# create a CVA biplot
 biplot(iris[,1:4]) |> PCO(dist.func = sqrtManhattan) |> plot()
 PCO.biplot PCO biplot

Description

Computes Principal Coordinate Analysis biplot

Usage

```
## S3 method for class 'biplot'
PCO(
    bp,
    Dmat = NULL,
    dist.func = NULL,
    dist.func.cat = NULL,
    dim.biplot = c(2, 1, 3),
    e.vects = NULL,
    group.aes = NULL,
    show.class.means = FALSE,
    axes = c("regression", "splines"),
    ...
)
```


Arguments

bp	an object of class biplot obtained from preceding function biplot().
Dmat	nxn matrix of Euclidean embeddable distances between samples
dist.func	function to compute Euclidean embeddable distances between samples. The default NULL computes Euclidean distance.
dist.func.cat	function to compute Euclidean embeddable distance between categorical variables for the samples. The default NULL computes the extended matching coefficient.
dim.biplot	dimension of the biplot. Only values 1, 2 and 3 are accepted, with default 2.
e.vects	e.vects which eigenvectors (canonical variates) to extract, with default 1 : dim.biplot.
group.aes	vector of the same length as the number of rows in the data matrix for differentiated aesthetics for samples.
show.class.means	
	logical, indicating whether to plot the class means on the biplot.
axes	type of biplot axes, currently only regression axes are implemented
	more arguments to dist.func

Value

an object of class biplot.

Examples

biplot(iris) |> PCO(dist.func=sqrtManhattan) |> plot()

Description

Generic Plotting function of objects of class biplot

Usage

```
## S3 method for class 'biplot'
plot(
    x,
    exp.factor = 1.2,
    axis.predictivity = NULL,
    sample.predictivity = NULL,
    zoom = FALSE,
    xlim = NULL,
    ylim = NULL,
)
```


Arguments

x
exp.factor numeric value with default axes of the biplot. Larger values for zooming out and smaller values for zooming in with respect to sample points in the biplot display.
axis.predictivity
either logical or a numeric value between 0 and 1 . If it is a numeric value, this value is used as threshold so that only axes with axis predictivity larger than the threshold is displayed. If axis.predictivity = TRUE, the axis color is 'diluted' in proportion with the axis predictivity.
sample.predictivity
either a logical or a numeric value between 0 and 1 . If it is a numeric value, this value is used as threshold so that only samples with sample predictivity larger than the threshold is displayed. if sample.predictivity = TRUE, the sample size is shrinked in proportion with the sample predictivity.
zoom logical, allowing the user to select an area to zoom into
xlim horisontal limits of the plot
ylim vertical limits of the plot
\ldots additional arguments.

Value

An object of class biplot.

Examples

biplot (iris[,1:4]) |> PCA() |> plot()
plot3D
Generic Plotting function of objects of class biplot in three dimensions

Description

Generic Plotting function of objects of class biplot in three dimensions

Usage

plot3D(bp, exp.factor $=1.2, \ldots$)

Arguments

bp	an object of class biplot
exp.factor	factor to expand plotting area beyond samples.
\ldots.	more arguments

Value

an object of class biplot

Examples

```
    biplot(data = iris) |> PCA(dim.biplot = 3) |> plot3D()
```

 prediction Predict samples to display on the biplot

Description

This function makes predictions of sample points, variables and means and displays them on the biplot.

Usage

prediction(bp, predict.samples = NULL, predict.means = NULL, which = 1:bp\$p)

Arguments

bp an object of class biplot obtained from preceding function biplot().
predict.samples
a vector specifying which samples to predict.
predict.means a vector specifying which group means to predict.
which a vector specifying which variable to do the prediction.

Value

A list object called predict appended to the object of class biplot with the following elements:
samples a vector of indices of samples which are being predicted.
predict.means a vector of group names of groups for which the means are being predicted.
which the vector of indices variables which are being predicted.
predict.mat the matrix of predicted samples.
predict.means.mat
the matrix of predicted group means.

Examples

biplot(data $=\operatorname{iris[,1:4])} \mid>\operatorname{PCA}($ group.aes=iris[,5], show.class.means = TRUE) $\mid>$
prediction(141:145,1:3) |> plot()

```
print.biplot
```

Generic print function for objects of class biplot

Description

This function is used to print output when the biplot object is created.

Usage

\#\# S3 method for class 'biplot' print(x, ...)

Arguments

$$
\begin{array}{ll}
x & \text { an object of class biplot. } \\
\ldots & \text { additional arguments. }
\end{array}
$$

Value

This function will not produce a return value, it is called for side effects.

Examples

```
out <- biplot (iris[,1:4]) |> PCA()
```

out

```
print.CA Generic print function of objects of class CA
```


Description

Generic print function of objects of class CA

Usage

```
    ## S3 method for class 'CA'
    print(x, ...)
```


Arguments

Value

no return value, called for side effects

Examples

```
out <- biplot(HairEyeColor[,,1], center=FALSE) |> CA()
out
```

reflect Reflect the biplot about a chosen axis

Description

This function provides the user with an option to reflect the biplot horizontally, vertically or diagonally.

Usage

reflect(bp, reflect.axis = c("FALSE", "x", "y", "xy"))

Arguments

bp an object of class biplot
reflect.axis a character string indicating which axis about to reflect. One of FALSE (default), " x " for reflection about the x-axis, " y " for reflection about the y-axis and "xy" for reflection about both axes.

Value
An object of class biplot

Examples

```
biplot(iris[,1:4],group.aes = iris[,5]) |> PCA() |> reflect("x") |> plot()
biplot(iris[,1:4],group.aes = iris[,5]) |> PCA() |> reflect("y") |> plot()
biplot(iris[,1:4],group.aes = iris[,5]) |> PCA() |> reflect("xy") |> plot()
```


regress Regression biplot method

Description

Regression biplot method

Usage

regress(bp, Z, group.aes=NULL, show.group.means = TRUE, axes = c("regression", "splines"))

Arguments

bp an object of class biplot obtained from preceding function biplot().
Z the matrix of coordinates of the samples
group.aes vector of the same length as the number of rows in the data matrix for differentiated aesthetics for samples.
show.group.means
logical, indicating whether group means should be plotted in the biplot.
axes the type of axes to be fitted to the biplot. Options are 'regression' for linear regression axes (default) and 'splines' for B-spline axes.

Value

Object of class biplot

Examples

```
biplot(iris[,1:4]) |> regress(Z=cmdscale(dist(iris[,1:4]))) |> plot()
```

```
regress.biplot
Regression biplot
```


Description

Computes regression biplot axes

Usage

```
## S3 method for class 'biplot'
regress(
    bp,
    Z,
    group.aes = NULL,
    show.group.means = TRUE,
    axes = c("regression", "splines")
)
```


Arguments

bp an object of class biplot obtained from preceding function biplot().
Z the matrix of coordinates of the samples
group.aes vector of the same length as the number of rows in the data matrix for differentiated aesthetics for samples.
show.group.means
logical, indicating whether group means should be plotted in the biplot.
axes the type of axes to be fitted to the biplot. Options are 'regression' for linear regression axes (default) and 'splines' for B-spline axes.

Value

an object of class biplot.

Examples

```
biplot(iris) |> regress(Z = cmdscale(dist(iris[,1:4]))) |> plot()
```

```
    rotate Rotate the biplot a chosen amount of degrees
```


Description

This function provides the user with an option to rotate the biplot anti-clockwise or clockwise.

Usage

rotate $(b p$, rotate. degrees $=0)$

Arguments

bp an object of class biplot
rotate.degrees a value specifying the degrees the biplot should be rotated, with default 0 . A positive value results in anti-clockwise rotation and a negative value in clockwise rotation.

Value

An object of class biplot.

Examples

biplot(iris[,1:4],group.aes = iris[,5]) |> PCA() |> rotate(200) |> plot()

```
samples Aesthetics for biplot samples
```


Description

This function allows formatting changes to samples.

Usage

```
samples (bp, which = 1:bp$g, col = ez.col, pch = 16, cex = 1,
label = FALSE, label.name = NULL, label.col=NULL, label.cex = 0.75,
label.side = "bottom", label.offset = 0.5,
connected=FALSE, connect.col = "black", connect.lty = 1,
connect.lwd = 1, opacity = 1)
```


Arguments

bp
which
col sample colour, with default blue.
pch sample plotting character, with default + .
cex sample character expansion, with default 1.
label logical (TRUE, FALSE), whether samples should be labelled, with default FALSE. Alternatively, specify "ggrepel" for non-overlapping placement of labels.
label. name vector of length number of samples, with default NULL, rownames(bp) are used.
label.col vector of length number of samples with the colour of the labels, defaulting to the colour of the sample points.
label.cex label text expansion, with default 0.75.
label.side side of the plotting character where label appears, with default bottom. Note that unlike the argument pos in text(), options are "bottom", "left", "top", "right" and not $1,2,3,4$.
label. offset offset of the label from the data point. See ?text for a detailed explanation of the argument offset.
connected logical, whether samples are connected in order of rows of data matrix, with default FALSE.
connect.col colour of the connecting line, with default black.
connect.lty line type of the connecting line, with default 1.
connect.lwd line width of the connecting line, with default 1.
opacity opacity of sample points, with default 1 (opaque).

Details

The arguments which, col, pch and cex are based on the specification of group. aes or classes. If no groups are specified, a single colour, plotting character and / or character expansion is expected. If g groups are specified, vectors of length g is expected, or values are recycled to length g.
The arguments label, label.cex, label.side and label. offset are based on the sample size n . A single value will be recycled n times or a vector of length n is expected.

Value

A list with the following components is available:
which which means to display.
col colour of the samples.
pch plotting character of the samples.
cex expansion of the plotting character of the samples.
label TRUE or FALSE, whether samples should be labelled, with default FALSE.
label. name If NULL, the row names will be used, with default NULL. Alternatively, a vector of length n should be used.

label.col	colour of the label.
label.cex	expansion of the label.
label.side	side at which to plot the label of samples.
label.offset	offset of the label from the data point.
connected	TRUE or FALSE, whether samples should be connected in row order of X.
connect.col	colour of the connecting line.
connect.lty	line type of the connecting line.
connect.lwd	line width of the connecting line. opacity
opacity of sample points, with default 1 (opaque).	

Examples

```
biplot(iris[,1:4]) |> PCA() |> samples(col="purple",pch=15, opacity=0.5) |> plot()
biplot(iris[,1:4]) |> PCA() |>
    samples(col="purple",pch=NA, opacity=0.5, label = TRUE) |> plot()
biplot(iris[,1:4]) |> PCA() |>
    samples(col="purple",pch=NA, opacity=0.5, label = TRUE,
            label.name = paste("s:",1:150, sep="")) |>
        plot()
biplot(iris[,1:4]) |> PCA() |>
    samples(col="purple",pch=NA, opacity=0.5, label = "ggrepel") |> plot()
```

sqrtManhattan Computes the square root of the Manhattan distance An example of a
Euclidean embeddable distance metric

Description

Computes the square root of the Manhattan distance An example of a Euclidean embeddable distance metric

Usage

sqrtManhattan(X)

Arguments

$\mathrm{X} \quad$ matrix of samples x variables for computation of samples x samples distance matrix

Value

a dist object

Examples

sqrtManhattan(iris[,1:4])

Description

This function is used to print summary output of the biplot. These summary outputs are related to measures of fit.

Usage

```
    ## S3 method for class 'biplot'
    summary(
        object,
        adequacy = TRUE,
        axis.predictivity = TRUE,
        sample.predictivity = TRUE,
        class.predictivity = TRUE,
        within.class.axis.predictivity = TRUE,
        within.class.sample.predictivity = TRUE,
    )
```


Arguments

```
    object an object of class biplot.
    adequacy a logical value indicating whether variable adequacies should be reported, with
        default TRUE.
    axis.predictivity
        a logical value indicating whether axis predictivities should be reported, with
        default TRUE.
    sample.predictivity
                            a logical value indicating whether sample predictivities should be reported, with
        default TRUE.
    class.predictivity
        a logical value indicating whether class predictivities should be reported, with
        default TRUE (only applicable to objects of class CVA).
    within.class.axis.predictivity
        a logical value indicating whether within class axis predictivity should be re-
        ported, with default TRUE (only applicable to objects of class CVA).
    within.class.sample.predictivity
    a logical value indicating whether within class sample predictivity should be
    reported, with default TRUE (only applicable to objects of class CVA).
    ... additional arguments.
```


Value

This function will not produce a return value, it is called for side effects.

Examples

```
    out <- biplot (iris[,1:4]) |> PCA() |> fit.measures()
    summary(out)
```

translate_axes Translate biplot axes

Description

Automatically or manually translate the axes away from the center of the plot

Usage

translate_axes(bp, delta $=0$, swop $=$ FALSE, distances $=$ NULL)

Arguments

bp An object of class biplot
delta numeric value indicating distance between axes
swop logical. Change the direction in which axes are translated
distances numeric vector of distances. Used to manually parallel translate the axes.

Details

This function uses the same algorithm implemented in TDAbiplot in the bipl5 package. It translates the axes out of the center of the plot. Correlated axes generally gets translated in the same direction.
This function calculates the orthogx and orthogy paramaters in axes()

Value

An object of class biplot with the translated distances appended under bp\$axes

Examples

```
#Translate the axes out of the plot center
bp <- biplot(state.x77, scaled = TRUE)|>
    CVA(state.region) |>
    translate_axes(swop=TRUE,delta =0.2)|>
    plot(exp.factor=3)
#adjust the distance of an axis
dist <- bp$axes$translate_distance
dist[7] <- 0.4
bp |> translate_axes(delta = 0.2, distances=dist) |> plot()
```


Index

alpha.bags, 3
alpha.bags(), 10
AoD, 4
AoD.biplot, 5
axes, 6
$\operatorname{axes}(), 10,48$
biplot, 8, 12
biplotEZ, 11
CA, 12, 12
CA(), 10
CA.biplot, 13
CATPCA, 14
classification, 15
classification.biplot, 16
classify, 17
classify(), 10
CVA, 12, 18
CVA(), 10
CVA.biplot, 20
CVAlowdim, 21
density1D, 22
density2D, 23
density2D(), 10
ellipses, 24
ellipses(), 10
extended.matching.coefficient, 25
fit.measures, 26
fit.measures(), 10
interpolate, 27
interpolate(), 10
kde2d, 23
legend. type, 28
legend.type(), 10
means, 29
means(), 10
newaxes, 30
newaxes(), 10
newsamples, 31
newsamples(), 10
PCA, 12, 33
PCA(), 10
PCA.biplot, 34
PCO, 35
PCO(), 10
PCO.biplot, 36
plot(), 10
plot.biplot, 38
plot3D, 39
prediction, 39
prediction(), 10
print.biplot, 40
print.CA, 41
reflect, 41
reflect(), 10
regress, 42
regress(), 10
regress.biplot, 43
rotate, 44
rotate(), 10
samples, 44
samples(), 10
sqrtManhattan, 46
summary.biplot, 47
TDAbiplot, 48
translate_axes, 48

