| autoplot.predictNMBscreen | Create plots of from screened predictNMB simulations. |
| autoplot.predictNMBsim | Create plots of from predictNMB simulations. |
| ce_plot | Create a cost-effectiveness plot. |
| ce_plot.predictNMBsim | Create a cost-effectiveness plot. |
| do_nmb_sim | Do the predictNMB simulation, evaluating the net monetary benefit (NMB) of the simulated model. |
| evaluate_cutpoint_cost | Evaluates a cutpoint by returning the mean treatment cost per sample. |
| evaluate_cutpoint_nmb | Evaluates a cutpoint by returning the mean NMB per sample. |
| evaluate_cutpoint_qalys | Evaluates a cutpoint by returning the mean QALYs lost per sample. |
| get_inbuilt_cutpoint | Get a cutpoint using the methods inbuilt to predictNMB |
| get_inbuilt_cutpoint_methods | Get a vector of all the inbuilt cutpoint methods |
| get_nmb_sampler | Make a NMB sampler for use in 'do_nmb_sim()' or 'screen_simulation_inputs()' |
| get_sample | Samples data for a prediction model with a specified AUC and prevalence. |
| get_thresholds | Gets probability thresholds given predicted probabilities, outcomes and NMB. |
| print.predictNMBscreen | Print a summary of a predictNMBscreen object |
| print.predictNMBsim | Print a summary of a predictNMBsim object |
| screen_simulation_inputs | Screen many simulation inputs: a parent function to 'do_nmb_sim()' |
| summary.predictNMBscreen | Create table summaries of 'predictNMBscreen' objects. |
| summary.predictNMBsim | Create table summaries of 'predictNMBsim' objects. |
| theme_sim | Returns a 'ggplot2' theme that reduces clutter in an 'autoplot()' of a 'predictNMBsim' object. |