| inferCSN-package | _*inferCSN*_: *infer*ring *C*ell-*S*pecific gene regulatory *N*etwork |
| %ss% | Value selection operator |
| as_matrix | Convert sparse matrix into dense matrix |
| calculate_accuracy | Calculate Accuracy |
| calculate_auc | Calculate AUC Metrics |
| calculate_auprc | Calculate AUPRC Metric |
| calculate_auroc | Calculate AUROC Metric |
| calculate_f1 | Calculate F1 Score |
| calculate_gene_rank | Rank TFs and genes in network |
| calculate_ji | Calculate Jaccard Index |
| calculate_metrics | Calculate Network Prediction Performance Metrics |
| calculate_precision | Calculate Precision Metric |
| calculate_recall | Calculate Recall Metric |
| calculate_si | Calculate Set Intersection |
| check_sparsity | Check sparsity of matrix |
| coef.srm | Extracts a specific solution in the regularization path |
| coef.srm_cv | Extracts a specific solution in the regularization path |
| example_ground_truth | Example ground truth data |
| example_matrix | Example matrix data |
| example_meta_data | Example meta data |
| filter_sort_matrix | Filter and sort matrix |
| fit_srm | Sparse regression model |
| inferCSN | *infer*ring *C*ell-*S*pecific gene regulatory *N*etwork |
| inferCSN-method | *infer*ring *C*ell-*S*pecific gene regulatory *N*etwork |
| log_message | Print diagnostic message |
| matrix_to_table | Switch matrix to network table |
| meta_cells | Detection of metacells from single-cell gene expression matrix |
| network_format | Format network table |
| network_sift | Sifting network |
| normalization | Normalize numeric vector |
| parallelize_fun | Parallelize a function |
| pearson_correlation | Correlation and covariance calculation for sparse matrix |
| plot_coefficient | Plot coefficients |
| plot_coefficients | Plot coefficients for multiple targets |
| plot_contrast_networks | Plot contrast networks |
| plot_dynamic_networks | Plot dynamic networks |
| plot_edges_comparison | Network Edge Comparison Visualization |
| plot_embedding | Plot embedding |
| plot_histogram | Plot histogram |
| plot_network_heatmap | Plot network heatmap |
| plot_scatter | Plot expression data in a scatter plot |
| plot_static_networks | Plot dynamic networks |
| predict.srm | Predicts response for a given sample |
| predict.srm_cv | Predicts response for a given sample |
| print.srm | Prints a summary of 'sparse_regression' |
| print.srm_cv | Prints a summary of 'sparse_regression' |
| r_square | R^2 (coefficient of determination) |
| simulate_sparse_matrix | Generate a simulated sparse matrix for single-cell data testing |
| single_network | Construct network for single target gene |
| sparse_cor | Safe correlation function which returns a sparse matrix without missing values |
| sparse_cov_cor | Fast correlation and covariance calcualtion for sparse matrices |
| sparse_regression | Fit a sparse regression model |
| split_indices | Split indices. |
| subsampling | Subsampling function |
| table_to_matrix | Switch network table to matrix |
| weight_sift | Weight sift |